
UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

39

A Rule Extraction Based on the Rough Set Theory

with Decremental Data

Horng-Fu Chuang

Dept. of Accounting

Information

Da-Yeh University

Zhang-Hua, Taiwan, ROC

frank@mail.dyu.edu.tw

Chun-Che Huang

Dept. of Information

Management

National Chi Nan University

Puli, Taiwan, ROC

cchuang@ncnu.edu.tw

Ying-Ling Hsieh

Dept. of Information

Management

National Chi Nan University

Puli, Taiwan, ROC

s98213544@ncnu.edu.tw

Zhi-Xing Chen

Dept. of Information

Management National Chi Nan

University

Puli, Taiwan, ROC

s99213514@ncnu.edu.tw

Abstract—In a dynamic database (DB), data deletion

operations are a frequent feature of database management

activities. Unfortunately, most existing DM algorithms assume

that the database is static and that updating a database requires

re-computation of all the patterns to enable rule extraction. Of

the DM techniques available, the rough set (RS) approach is a

knowledge discovery tool that can be used to help identify logical

patterns hidden in massive data. It is also useful for knowledge

discovery, pattern recognition and decision analysis. However,

traditional RS approaches cannot produce rules with preferential

order and often lack focus. They generate too many rules and

cannot guarantee that the decision table is credible. This study

proposes a DAREA (Decremental Alternative Rule-Extraction

Algorithm) to address the issue of data deleted from the database

and to generate preference-based rules, according to a strength

index (SI), specifically for the case wherein the desired reducts

are not necessarily unique. The algorithm does not need to re-

compute rule sets that can quickly generate and complete rules,

from the very beginning. Experiments are presented to validate

that the proposed approach is superior to the traditional RS

approach.

Keywords—Data mining, Dynamic databases, Rough set

approach, Decremental Algorithm, Decremental data, Rule

induction

I. INTRODUCTION

In the past, researchers usually assumed databases were
static, to simplify data-mining problems [1]. In real-world
applications, these database change, over time, because of the
data insertion, deletion and modification operations that are
frequently used in database management activities [2]. If this
behavior changes, over time, the continued use of the original
system could lead to unacceptable results and produce
unacceptable decisions, based on these results [3]. Business
databases are dynamic in the sense that (1) the data in the
database may be continually updated, over time, so the content
and the size can change [4], (2) old data must be deleted from
the database [2, 5] and (3) distributed databases are being
updated with a new block of data, at regular time intervals [6].

Data deletion is one of the most frequently used operations
in many business databases [4]. The data are deleted are
referred to decremental data. When some database transactions
are deleted, or modified, the content of the database is been

updated and this database is referred to as an updated database.
Mining the updated database is referred to as decremental
mining [4]. It is obviously inefficient and time-consuming to
repeatedly perform the data mining algorithm, in order to
analyze the whole database, including the decremental data and
the original data [5], especially for decremental rule extraction,
which extracts a rule from the data source, by comparing the
updated database with the data deleted. These database changes
occur, over time, because of the deletion of old data operations
that are frequently used in database management activities [2].
Unfortunately, most existing data-mining algorithms assume
that the database is static and that a database update requires
rediscovery of all of the patterns, by scanning the entire data,
old and new, for the purposes of mining and rule extraction [4].

In the field of data mining, the rough set (RS) approach can
deal with qualitative information, based on an individual object
model [7]. Rough set theory was developed by Pawlak [8]. The
theory has been extensively used in decision-making,
particularly for sorting and classifying problems with multiple
criteria [9]. However, up to date, few RS approaches have
considered decremental rule extraction, when data is deleted
from databases due to out of date [2, 5].

In addition, literature relating to knowledge discovery [10]
reveals that using RS induct attributes often generates too many
rules and has no focus. These rough set approaches cannot
guarantee that the classification of a decision table is credible
[11]. Therefore, Tseng et al. [12] proposed the AREA
(Alternative Rule Extraction Algorithm) to solve the problem.
The AREA (Alternative Rule Extraction Algorithm) discovers
preference-based rules, in accordance with the strength index
(SI) of the reducts, specifically for the case wherein the desired
reducts are not necessarily unique, since several reducts can
have the same SI value. Using the AREA, an alternative rule
can be defined, which is the rule with identical preference to
the original decision rule, but which may be more attractive to
a decision-maker than the original one.

To address the issues associated with dynamic DB’s, with
respect to data deletion and extraction of creditable and
alternative rules, this study proposes a DAREA (Decremental
Alternative Rule Extraction Algorithm) for dynamic DB’s, in
which some data can be deleted. The algorism solves the
problem of how to extract rules from the data source, for
decremental rule extraction, by comparing the updated database

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

40

and particular data deleted from the original database, rather
than implement AREA once again. With the proposed
approach, the results of rule extraction correctly reflect the
current situation and there is need to re-run the algorithm for
rule extraction, to analyze the whole database, after data is
deleted.

This paper is organized as follows. Section II describes the
proposed approach and provides illustrated examples. Section
III details an experiment that compares the application’s
software to run the two algorithms (AREA and DAREA).
Finally, Section IV offers conclusions and suggestions for
future research.

II. SOLUTION APPROACH

A. Structure of the proposed solution

The proposed algorithm is based on the reduct generation
procedure of Pawlak [13] and the alternative rule extraction
algorithm of Tseng et al. [12]. The proposed approach updates
rule sets by partially modifying the original rule sets.

Since the objects in most databases are always changing
(e.g., objects are often added, deleted, or updated), a
practicable method for use in real applications must be able to
cope with changes of objects [14]. With the decremental data,
the final rules may be classified to five cases.

Case 1. No rule Generated; No rule Replaced; No rule
Deleted: A deleted object does not result in any rule change.

Case 2. No rule Generated; No rule Replaced; Rule
Deleted: A deleted object results in the original rule being
deleted.

Case 3. No rule Generated; Rule Replaced; No rule
Deleted: A deleted object results in an original rule being
replaced by a new rule.

Case 4. Rule Generated; No rule Replaced; No rule
Deleted: A deleted object results in a new rule.

Case 5: Hybrid case

Case 5 is a hybrid of cases 1, 2, 3 and 4. In practice, the
hybrid case often occurs because a deleted object may result in
a combination of the previous 4 cases.

Case 5-1: Rule Generated; Rule Replaced; No rule Deleted
The case wherein a deleted object results in the generation of a
new rule generation and the original rules are simultaneously
replaced by new rules.

Case 5-2: Rule Generated; No rule Replaced; Rule Deleted
The case wherein a deleted object results in the generation of a
new rule and the original rules are also deleted.

Case 5-3: No rule Generated; Rule Replaced; Rule Deleted
The case wherein a deleted object results in the original rules
being replaced by new rules and the original rules are
simultaneously deleted.

Case 5-4: Rule Generated; Rule Replaced; Rule Deleted
The case wherein a deleted object results in generation of a

new rule and the original rules are deleted and simultaneously
replaced by new rules.

B. Lemma

Three lemma are used in the decremental algorithm:

Lemma 1: If D(Xi)Aj - numdel = Ø, then a new reduct is
generated.

Lemma 2: The new reduct must be different from the previous

reduct. (Reductnew Reductold)

Lemma 3: If Temp has not been changed, then only one rule
will be reduced, or the rules are not affected. (If Temp=0, then

old rule set new rule set.)

Notations: D(Xi)Aj: the j-th attribute of the object, Xi,
column in the difference set table. For example, D(X1)A2 is the
column set of object 1’s attribute, A2, in the difference set table.
Temp: he record that determines if the order of SI has changed
and is different from the original;

C. The algorithm

The principal elements of the algorithm are presented as
follows: Firstly, all parameters are set to null. Then, the
deleted objects are selected and their object number is set to
numdel. Secondly, if any numdel is in the sets of columns in D,
numdel is deleted. Based on Lemma 1, if any column sets
become empty, then the reduct generation procedure of
Pawlak [13] is used to generate a new reduct of D(Xi)Aj,
which is added to reduct set of table (R). Thirdly, the possible
reducts affected by numdel in R are identified and deleted.
The value of the new temp, Tnew, is then compared with the
value of original temp, Told, to decide whether the rules should
extracted, once more. Based on Lemma 3, if Tnew is different
from Told, and then the rules are extracted, again, according to
AREA.

Notations:

U: a finite set of objects; A: an attribute set; d: a “decision
attribute set”; i: the object index; j: the attribute index; n: the
reduct index; l: the value of new level; L: the number of
original levels; q: the number of object data; r: the number of
attributes; k: the number of reducts in the “reduct set of the
table”; S: the case number, which is determined by the decisive
attribute and Ui; Tnew: the number of the sorting SI, according
to case number, S, in the new reducts set, in the table; Told: the
number of the sorting SI, according to case number, S, in the
original reducts set, in the table; Temp: the record that
determines if the order of SI has changed and is different from
the original; Xi: the object number, e.g., object Xi ∈1=object 1;
aij: the j-th value set of the attribute for object Xi; numdel: the
number of a deleted object, e.g., if the deleted object is object 1,
then numdel =1; I(): the original information, in the table; I(Xi)Aj:
the j-th attribute of the object, Xi, column in I, e.g., I(Xi)Aj is Xi’s
Aj column set in the original information, in the table; D(): the
difference set of each attribute, Aj, (the equivalent class of each
objects), and attributes, d (the equivalent class of each objects,
corresponding to a decision), in the table; D(Xi)Aj: the j-th
attribute of the object, Xi, column in the difference set table,

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

41

e.g., D(X1)A2 is a column set of object 1’s attribute A2, in the
difference set table; E: extension of table; R: reduct set in the
table; F: final rules in the table; Fold: the set of rules (reducts)
selected from the original rules; Fnew: the set of rules (reducts)
selected from the new rules; Fgenerate: the set of rules (reducts)
selected by generating rules; Freplace: the set of rules (reducts)
selected by replacing rules; Fdelete: the set of rules (reducts)
selected by deleting rules; OC: column of object cardinality,
e.g., I(numdel)oc is numdel’s object cardinality column, in the
original information in the table; MO: column of merged object
No’s, e.g., RMO is the merged object column in the reduct set in
the table; SO: column of support object No’s, e.g., FSO is the
support object column in the final decision rules, in the table;

Procedure:

Input: The number of a deleted object, numdel.

Output: The set of decision rules and alternative rules, Fnew.

Step 0 Initialization

(i). When an object is deleted, set the object number

to numdel.

(ii).Set S = 1, l=1, Fold = original rules set, Fnew = ,

Fgenerate = , Freplace = , Fdelete = .

Step 1 Check if there is any numdel in sets of columns in D

and delet numdel.

For i = 1 to q

 For j = 1 to r

If numdel∈ D(Xi)Aj && D(Xi)Aj - numdel ==

empty

 Based on Lemma 1, go to step 1.1.

Else go to step 2

 End If

 Endfor

Endfor

Step 1.1 Apply the reduct generation procedure of Pawlak

[17], to generate a new reduct of D(Xi)Aj.

Step 1.2 Check whether the new reduct exists in the R.

For i = 1 to k

 If new reduct ∈ Ri

 Based on Lemma 2, go to step

1.2.1.

 Else go to step 1.2.2.

 End If

Endfor

Step 1.2.1 Add the new reduct to R.

Step 1.2.2 Merge the new reduct with the identified original

reduct, into R. The new reduct of object number

joins RMO and the cardinality is also added to ROC.

Step 2 Check whether the new reduct is better than the

original.
For l = 1 to L
 If a new reduct is not yet generated,

 Go to step 2.1.

 Else go to step 3.

 End If

Endfor

Step 2.l Check whether the intersection of Aj and D(Xi) is

empty.

 If it is empty

 Go to Step 1.1.

Else go to step 2.
 End If
Step 3 Find any reduct that is possibly affected by numdel,

in R:

For n = 1 to k

 If numdel ∈ RMO(n)

 Go to step 3.1.

 End If

Endfor

Go to step 3.2.

Step 3.1 When the numdel is deleted from RMO, subtract

I(numdel)OC from ROC.

Step 3.2 Re-compute the strength index, SI. Sort SI

according to case number, S, and Tnew is stored, with

the order, for each reduct.

Step 4 Check whether the new order has not changed, in R.
Temp=0
For n = 1 to k

 If Tnew(n) != Told(n)

 Temp=1

 End If

Endfor

Step 5 Decide whether to re-extract the rules, according to

the value of Temp.

Based on Lemma 3, if Temp = 1, the rules must be

re-extracted, so go To Step 5.1, else go To Step 6.

Step 5.1 Re-extract the rules, according to AREA

Set Fold=the original rules，Fgenerate=the new rules，

Freplace=the replaced rules，Fdelete=the deleted rules.

Step 6 Print Fnew= {Fold + Fgenerate + Freplace - Fdelete}.

D. Time complexity for the proposed decremental algorithm

Using the proposed algorithm, the time complexities for

the 5 cases are presented in Table I. The algorithm addresses

the problems of deleted data deleted, without the need to re-

process all of the data, from the very beginning. Using this

approach, the method proposed in this paper not only solves

decremental problems, but also decreases the time complexity.

As already mentioned, when objects are deleted from the

database, using a DAREA algorithm, the time complexity for

the worst cases (Case 3 and Case 5) are O

(nm(Ncor)+q(Nnr)+r(Nr)). When objects are deleted from the

database with the original AREA algorithm, the time

complexity for the worst case is O (m
2
k (Ncor) + qk(Nnr)

+r(Nr)), as presented in Table I.

file:///C:/Users/GATEXPERTS/AppData/Local/AppData/Roaming/Microsoft/Downloads/decremental%20RST-Alice-11-8-23-IEEE%20SMCA%20(1).docx%23_ENREF_17

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

42

TABLE I. THE COMPLEXITY FOR THE PROPOSED ALGORITHM,

 IN FIVE CASES

Case

number
Description

Time complexity in the

worst case

1
A deleted object does
not result in any rule

change.

O (nm(Ncor))

2

A deleted object

results in the original
rule being deleted

O (nm(Ncor)+r(Nr))

3

A deleted object

results in an original
rule being replaced by

a new rule.

O (nm(Ncor)+q(Nnr)+r(Nr))

4
A deleted object

results in a new rule.
O (nm(Ncor)+q(Nnr))

5
A hybrid case of Case

1, 2, 3 and 4.
O (nm(Ncor)+q(Nnr)+r(Nr))

Original

AREA
algorithm

Without the solution

to decremental data.

O (m2k (Ncor) + qk(Nnr)

+r(Nr))

n: total number of original objects; m: total number of

attributes; r: total number of rules; q: total number of reducts,

after removal; k: total number of objects, after removal; Ncor:

total number of original reducts from the object that generates

the rule (or reduct); Nnr: total number of reducts, from the new

data set; Nr: total number of rules, from the rule set;

Comparing these two complexities, it is obvious that the
proposed algorithm is more efficient. Since the complexity of
the decremental algorithm is O(n

2
), the worst case for the

decremental algorithm must have less complexity than the
original AREA algorithm, which is O(n

3
). Therefore, the

proposed algorithm is much more efficient than that without a
decremental AREA algorithm.

III. EXPERIMENTS

Firstly, the traditional AREA algorithm is used and the

CPU computation time for deletion of data is measured. The

unit of CPU computation time is milliseconds (ms). Object

No. represents the data variables. The number of objects varies

from 1 to 1000. The attribute variable (Ai) represents the

number of attribute variables. The number of attributes varies

from 1 to 20. The DB variable represents the original database,

and db variables represent the objects that are assumed to be

deleted from DB. |DB| and |db| denote the size of DB and db,

respectively.

In order to compare the efficiency, using AREA and

DAREA, the number of objects in the database is 100, 200,

400, 500, 700 and 1000 and the ratios of data deleted from the

database are 0.01*DB, 0.1*DB, 0.4*DB and 0.7*DB. The rules

generated and the CPU computation time required for re-

extracting the rules in Table II, after data deletion were

measured. At first, the number of the objects and the number

of the attributes were set and then random numbers were

automatically generated by the system. Finally, the AREA

rules were re-extracted.

A database, A5.D100, was generated, as DB, and the ratio

of data deleted, db, was 1%. The AREA button was then

pressed, to re-extract the rules and the execution screen

showed the CPU computation time, after re-extracting the rule.

The CPU computation time is presented in Table II. Data

deletion was then performed, for db=0.1|DB|, so db = 10. The

AREA button was pressed, to re-extract the rules. The CPU

computation time is presented in Table II. Data deletion

continued, in a similar fashion, until the data deleted was

db=0.7|DB|, so db =70.

TABLE II. USING AREA TO RE-EXTRACT RULES (WITH

ATTRIBUTES=5)

DB 1%|DB| 10%|DB| 40%|DB| 70%|DB|

100 286 246 171 134

200 721 595 361 185

400 2309 1815 959 400

500 3397 2685 1326 547

700 6462 5088 2501 895

1000 13257 10233 4635 1453

Secondly, the CPU execution time, for data deletion, was

measured for the decremental algorithm, DAREA. Object No.

represents the data variables. The number of objects varies

from 1 to 1000. The attribute variable (Ai) represents the

number of attribute variables. The number of the attributes

varies from 1 to 20. The DB variable represents the original

database and the db variables represent the objects that are

assumed to have been deleted from DB. |DB| and |db| denote

the size of DB and db, respectively.

The number of the objects in the database is 100, 200,

400, 500, 700 and 1000, and the ratios of data deleted from the

database are 0.01*DB, 0.1*DB, 0.4*DB and 0.7*DB. The rules

generated and the CPU computation time required to re-

extract rules, after data deletion, are recorded in Table III.

Firstly, the number of the objects and the number of the

attributes were set and then random numbers were

automatically generated by the system. Finally, the AREA

rules were re- extracted.

The same database, A5.D100, is used, as DB, and the

ratio of data deletion, as db, was 1%. The DAREA button was

then pressed, to re-extract the rules, and the execution screen

shows the CPU computation time, for re-extracting the rule.

The CPU computation time is presented in Table III.

Data deletion was then performed, for db=0.1|DB|, so db

= 10. The DAREA button was pressed, to re-extract the rules,

and the CPU computation time is presented in Table III. Data

deleting continued in a similar fashion, until the data deleted

was db=0.7|DB|, so db = =70

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

43

TABLE III. USING DAREA TO RE-EXTRACT RULES (WITH

ATTRIBUTES=5)

DB 1%|DB| 10%|DB| 40%|DB| 70%|DB|

100 112 110 114 81

200 173 189 203 91

400 403 360 226 143

500 423 385 238 141

700 667 594 350 173

1000 1120 866 481 196

With reference to the computation times in Tables II and

III, the line chart, below, shows a comparison of the CPU

computation times for the AREA and DAREA. The values of

|DB| are 100, 200, 400, 500, 700 and 1000 respectively.

Fig. 1 shows the ratio of computation times, for DAREA

and AREA. The CPU execution time of AREA is divided by

the CPU execution time of DAREA. The results show that

DAREA performs much better than AREA, for several ratios

of data deletion from the database, and that the efficiency of

the computation increases, as the number of objects increases

from 100 to 1000.

If |db| = 1%|DB|, 10%|DB|, 40%|DB| and 70%|DB,|

respectively, then the figure represents the ratio of AREA to

DAREA CPU computation times.

Fig. 1 shows that DAREA performs 5 to 9 times better

than AREA, when the number of the objects is 700, and that

DAREA performs 7 to 11 times better than AREA, when the

number of the objects is 1000.

Figure 1. A comparison of the ratio of AREA to DAREA CPU execution times

IV. CONCLUSIONS
This study reviewed literature related to traditional rough

set approaches and decremental techniques and presented the
drawbacks of previous studies. An decremental alternative rule-
extraction algorithm was proposed, based on the AREA of
Tseng et al. [12], to address the aforementioned drawbacks,
which require re-processing of the entre database, when objects
are deleted. Illustrative example cases were then presented, to
show how the approach searches for solutions. Finally,
experiments proved the proposed approach to be superior to the

traditional approach. The contributions of the paper are
summarized, as follows:

 In a dynamic database, data deletion operations are
frequently used, in database management activities.
When an object is deleted from the dynamic DB, it is
unnecessary to re-extract the rules, by re-computing with
AREA, from the beginning; the proposed approach
updates reduct sets, using a difference set, thereby
reducing computation time.

 The proposed decremental Alternative rule-extraction
algorithm is based on the AREA of Tseng et al. [12], so
it o takes advantage of the Tseng method [11], to identify
preference-based rules, according to the strength indices
of reducts, and guarantees that the classification of a
decision table is credible.

 The AREA can select more than one of the maximum
SI’s. Therefore, this study, addresses the problem of
incomplete rules.

REFERENCES

[1] T.-P. Hong, C.-Y. Wang, and S.-S. Tseng, “An incremental mining
algorithm for maintaining sequential patterns using pre-large
sequences,” Expert Syst. Appl., vol. 38, no. 6, pp. 7051-7058, 2011.

[2] S. Zhang, J. Zhang, and C. Zhang, “EDUA: An efficient algorithm for
dynamic database mining,” Information Sciences, vol. 177, no. 13, pp.
2756-2767, 2007.

[3] F. Crespo, and R. Weber, “A methodology for dynamic data mining
based on fuzzy clustering,” Fuzzy Sets and Systems, vol. 150, no. 2, pp.
267-284, 2005.

[4] S. Zhang, J. Zhang, and Z. Jin, “A decremental algorithm of frequent
itemset maintenance for mining updated databases,” Expert Syst. Appl.,
vol. 36, no. 8, pp. 10890-10895, 2009.

[5] F. A. Sohel, and C. M. Rahman, “Association Rule Mining in Dynamic
Database using the Concept of Border Sets,” Asian Journal of
Information Technology, vol. 3, pp. 508-515, 2004.

[6] M. E. Otey, C. Wang, S. Parthasarathy et al., "Mining Frequent Itemsets
in Distributed and Dynamic Databases." pp. 617-620.

[7] A. Kusiak, “Feature transformation methods in data mining,”
Electronics Packaging Manufacturing, IEEE Transactions on, vol. 24,
no. 3, pp. 214-221, 2001.

[8] Z. Pawlak, “Rough Sets,” International Journal of Information and
Computer Sciences, vol. 11, no. 5, pp. 341-356, 1982.

[9] Q. Yuhua, L. Jiye, and D. Chuangyin, “Incomplete Multigranulation
Rough Set,” Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, vol. 40, no. 2, pp. 420-431, 2010.

[10] P. V. Gorsevski, and P. Jankowski, “Discerning landslide susceptibility
using rough sets,” Computers, Environment and Urban Systems, vol. 32,
no. 1, pp. 53-65, 2008.

[11] T.-L. B. Tseng, “Quantitative Approaches for Information Modeling,”
University of Iowa, Iowa city, 1999.

[12] T.-L. B. Tseng, C.-C. Huang, and J. C. Ho, "Autonomous Decision
Making in Customer Relationship Management: A Data Mining
Approach."

[13] Z. Pawlak, "Rough Sets: Theoretical Aspects of Reasoning about Data,"
Rough Sets: Theoretical Aspects of Reasoning about Data, Boston.:
Kluwer Academic Publishers, 1991.

[14] N. Zhong, J.-Z. Dong, S. Ohsuga et al., "An incremental, probabilistic
rough set approach to rule discovery." pp. 933-938.

