
UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

28

Implementation, Analysis and Application of

Retroactive Data Structures

Suneeta Agarwal

Professor, Computer Science and Engineering Department

Motilal Nehru National Institute of Technology

Allahabad, India 211004

suneeta@mnnit.ac.in

Prakhar Panwaria

Ex-Student, Computer Science and Engineering Department,

Motilal Nehru National Institute of Technology

Allahabad, India 211004

prakhar.panwaria9@gmail.com

Abstract — Retroactive data structures, introduced by

Demaine, Iacono and Langerman [1], represent a model through

which operations can be performed on a data structure in past

time. Here, in this paper, we focus on the data structures for which

retroactivity hasn’t been implemented yet and the enhancements

in existing Retroactive data structures. Besides going through the

data structures used for their implementation, we also analyze

their performance and demonstrate their usefulness through real

life use-cases and applications.

Keywords — data structure, reteroactive data structure

I. INTRODUCTION

Talking generically, a data structure is created using two
operations – Insert(x) and Delete(x). Insert(x) operation inserts
„x‟ value in the data structure, whereas Delete(x) operation
removes „x‟ value from the data structure. While creating such
data structure, what if a value is mistakenly inserted or deleted
at a particular instance in past? How do we regenerate that data
structure with correct values in present? There are generally
two solutions that are followed. First is performing „roll back‟
operation on the current state of data structure, where we roll
back all the operations performed on the data structure just
before that particular instance and then again perform the
subsequent operations but, this time, without that faulty
operation. But, this is considered as an inefficient and time
consuming solution. Second solution is to use „Persistent Data
Structures‟, where whenever we perform an operation on the
data structure, we maintain its different versions so that we may
easily reach the version of the data structure created through a
wrong operation and then follow up with subsequent operations
to finally get the desired data structure. But, the solution is
considered inefficient from space point of view.

Retroactive data structures aim to solve this problem in both
the dimensions by maintaining the sequence of operations
performed on that data structure in another data structure, and
use it to evaluate the actual state of the concerned data structure
if a wrong operation was performed on it in past time.

A. Motivation
Retroactive data structures find a vast scope of application as an

error correction technique in real life scenarios. This paradigm

can also be used in the situations where we might want to find

out the state of the system with different sequences of operations

performed on it in the past. Going through the study done by

Demaine, Iacono and Langerman [1] around Retroactive data

structures, the concept and its large scope of application

intrigued us to perform a deep research and analysis on the

subject and apply the idea in the very basic scenarios. Thus, in

this paper, we try to implement retroactive data structures using

different algorithms and also try to develop retroactivity in other

data structures. To achieve the main goal, the following have to

be accomplished:

 Good understanding of the existing data structures.

 Understanding the retroactive versions of these data
structures.

 Comparison with existing techniques, like persistent
data structures and rollback methods.

 Selecting the best data structures for achieving
retroactivity efficiently.

B. Important Terms
The following terms are important to understand the subject

discussed later in the paper:

1. Partially Retroactive: A data structure is considered as
„Partially Retroactive‟ if we can perform an operation
on that data structure in the past and get its
corresponding result in the present.

2. Fully Retroactive: A data structure is considered as
„Fully Retroactive‟ if along with having properties of
Partially Retroactive data structure, we are also able to
answer any queries to the data structure made in the
past.

C. Outline
The paper follows with the description of data structures used to

implement retroactivity in Binary Search Tree and Hash in

Section 2. In Section 3, we try to compare the existing data

structure used for implementing Fully Retroactive Union-

Sameset with our proposed data structure and analyze their

performance results. Section 3 discusses the applications and

different use-cases of retroactivity in data structures.

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

29

II. DATA STRUCTURES IMPLEMENTED

Consistency Note: We are assuming that at no point of time, the

retroactive data structure is inconsistent. All the checks

regarding consistency can be implemented very easily.

A. Fully Retroactive Binary Search Tree
Following are the details about the supported operations and the

data structure used to implement Fully Retroactive BST.

Normal Operations Supported:

Update operation:

1. insert (x): insert an element in the binary search tree.

Query operations:

1. find_root (): returns the root of the binary search tree.

2. structure (): returns the whole structure of the binary

search tree.

3. search (x): searches an element „x‟ within the binary

search tree.

Retroactive Operations Supported:

Update operations:

1. insert_operation (insert(x), t): inserts the insert(x)

operation at time „t‟, i.e. it inserts an element „x‟ in the

binary search tree at time „t‟.

2. delete_operation (t): deletes the insert(x) operation at

time „t‟, i.e. it deletes an element „x‟, which had been

inserted at time „t‟, from the binary search tree.

Query operations

1. find_root (t): returns the root of the binary search tree

at time „t‟.

2. structure (t): returns the whole structure of the binary

search tree at time „t‟.

3. search (x,t): finds out whether an element „x‟ is

present in the binary search tree at time ‟t‟.

As mentioned earlier, the fully retroactive data structure will

not only allow queries at the present time but also at past time,

and also the updates of operations at any point of time.

Data Structure Used:

 Binary Search Tree, in which all nodes are linked

through doubly linked list.

 Each node of the tree includes following fields:

o v: value of the node.

o t: time at which node is inserted.

o lc: pointer to Left Child.

o rc: pointer to Right Child.

o ls: pointer to Left-Hand-Side Node of doubly

linked list.

o rs: pointer to Right-Hand-Side Node of

doubly linked list.

o par: pointer to Parent Node.

insert (x) operation:

This is the main update operation used to create the binary

search tree. The tree structure can be created using two

methodologies:

1. Preserving the structure:

The binary search tree can be created while preserving

the structure. By preserving the structure, we mean to

say that suppose if an element „x‟ is inserted at any time

„t‟ using insert_operation(Insert(x), t), the structure is

created as if in reality the binary search tree was created

using the insert(x) operation at time „t‟. So, „x‟ should be

present in the exact position like if it would have been

inserted at time ‟t‟ using insert(x) operation instead of

retroactive operation insert_operation(Insert(x), t).

2. Without preserving the structure:

Another method of creating the binary search tree

retroactively is without preserving its structure, i.e. if an

element is inserted at any time ‟t‟ using retroactive

operation insert_operation(Insert(x), t) , it can be

inserted as if it is inserted at the present time, however

the time field of the node inserted will hold the value

equal to time „t‟, since in binary search tree there is no

difference where we insert a value in it if we are just

concerned with its „searching‟ operation.

Average Case Complexity:

After implementation, we observed the following average case

complexities for different retroactive operations as:

Operations Preserving

the

structure

Without

Preserving

the structure

insert_operation (Insert(x), t) O(log n) O(log n)

delete_operation (t) O(log n) O(log n)

find_root (t) O(1) O(1)

search (x,t) O(log n) O(log n)

* „n‟ is the total number of elements in the binary search tree.

B. Fully Retroactive Hash
Following are the details about the supported operations and the

data structure used to implement Fully Retroactive BST.

Normal Operations Supported:

Update operations:

1. insert (x): inserts an element in the hash.

2. delete (x): deletes an element in the hash.

Query operation:

1. search (x): searches an element „x‟ within the hash.

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

30

Retroactive Operations Supported:

Update operations:

1. insert_operation (insert(x), t): It inserts the insert(x)

operation at time „t‟, i.e. it inserts an element „x‟ in the

Hash at time „t‟.

2. delete_operation (t): It deletes the insert(x) operation at

time „t‟, i.e. it deletes an element „x‟, which had been

inserted at time „t‟, from the Hash.

Query operation:

1. search (x,t): It find out whether an element „x‟ is

present in the hash at time ‟t‟.

As mentioned earlier, the fully retroactive data structure will

not only allow queries in the present time but also in past time,

and also updating of data structure at any point of time.

Data Structure Used:

 AVL Tree, which contains link to nodes that are deleted.

 Hash table in which each node contains extra time variable

Average Case Complexity:

After implementation, we observed the following average case

complexities for different retroactive operations as:

Operations Retroactive Hash

insert_operation(Insert(x), t) O(k)

delete_operation(t) O(k)

search(x,t) O(k)

* „k‟ is the max number of collisions.

III. DATA STRUCTURES ENHANCED

A. Fully Retroactive Union-Sameset
The fully retroactive Union-Sameset will not only allow queries

at the present time but also at past time, and also the updates of

operations at any point of time.

Data Structure Used:

 Doubly linked list, storing sequence of operations sorted

by time.

 Hash Table of pointers, pointing to different nodes of the

forest.

 Tree(s), one or more than one (created using Rank

Heuristic Method and Path Compression Method [6]).

Query operations:

1. sameset (x,y): determines whether „x‟ and „y‟ are in the

same tree or not.

sameset (x,y) operation:

The Union-Find structure can be made fully retroactive by

replacing the find(x) operation by a sameset (x, y) operation,

since find(x) can give its result according to the data structure

built at present. We can query about the data structure at past

time using sameset (x, y). In order to support retroactive

operations, we add to each edge the time at which it was

created. Hence, to determine whether two nodes are in the same

set at time „t‟, we just have to verify that the maximum edge

time on the path from „x‟ and „y‟ to their respective roots is no

larger than „t‟.

Link-Cut Tree:

E. D. Demaine, J. Iacono, and Langerman [1] proposed that

Link-Cut Trees of D. D. Sleator and R. E. Tarjan [4] can be

used as an efficient data structure, to provide full retroactivity,

to maintain the forest, in O(log n) time per operation. This data

structure maintains a forest and support the creation and

deletion of nodes, edges, and the changing of the root of a tree.

Comparison of our data structure with Link-Cut Tree:

1. Accessing of elements by Link-Cut tree takes O(log n)

time, whereas by the data structure used in the project

takes O(1) time.

2. In addition to this, the Link-Cut tree is a standard binary

tree and has height of „log n’, where „n’ being the no. of

elements in the tree, thus finding the root takes O(log n)

time, whereas here, root can be found initially in O(log

n) time, and later in O(1) time, because of the path

compression during the first query.

3. Here, we can have limited no. of nodes since we have

used hash table, but there is no such kind of restriction in

Link-Cut Tree.

Complexity Analysis:

We compared the complexities using both the structures and

here is what we analyzed:

Operations Our Data

Structure

Link-Cut

Tree

Accessing element in tree O(log n) O(log n)

Past time query: sameset (x) O(log n) O(log n)

Overall Time Complexity O(log n) O(log n)

Overall Space Complexity O(n
2
) O(n

2
)

* „n‟ is the total number of elements in the forest.

IV. APPLICATIONS OF RETROACTIVITY

Here, we present multiple applications of retroactivity in
various data structures and how they could be used in various
real life scenarios.

A. Retroactive Queue: Breadth First
Traversal in a Graph

Problem:

Suppose, we realize after traversing the graph in breadth first

manner, that a node which did not exist was considered to be in

graph, and we want to write the corrected traversal.

Normal Solutions:

1. Redo the whole traversal

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

31

2. Rollback to the point where node was traversed.

Both the solutions have linear complexity and are inefficient,

especially in the cases where the number of nodes affected is

significantly less than the total number of nodes in the graph.

Therefore, we come up with the retroactive solution.

Retroactive solution:

The operations which would be affected by non-existence of

that node, only those need to be, retroactively modified.

Example: Consider the following graph. Normal Breadth First

Traversal carried is as follows:

Figure 1. Incorrect Graph

Now, suppose that node 4 was not present in the graph, then:

Figure 2. Original and Correct Graph

Only the underlined operations need to be deleted and inserted

again at proper places, rather than redoing the whole traversal.

By using the fully retroactive implementation of queue, these

changes are made.

After changing, the result is:

QUEUE OPERATIONS

1 enque (1)

2 dequeue (1)enque (2)

3 dequeue (2)enque (3)

6 dequeue (3)enque (6)

5 dequeue (6)enque (5)

8 dequeue (5)enque (8)

7 9 dequeue (8)enque (7), enque (9)

9 dequeue (7)

 dequeue (9)

Thus, the retroactive queue avoids the redoing of all the

operations, and only alters the required operations.

Steps involved in implementing above application:

 Traverse the graph using retroactive queue instead of

normal queue

 While traversing the graph for first time, store timings

of enque() and dequeue() operations of every node

 Later, when some earlier node is to be removed,

identify that node as target node

 Flag all the enque and deque operations depending on

the deletion of target node (the storage created in 2
nd

step and concepts of retroactive queue will be used in

the process)

 One by one, resolve the dependencies of all the

flagged nodes

 Reposition the operations consistently

 Identify and eliminate the infinite loop of

dependencies, which is formed in some cases

 The resulting structure gives the corrected breadth first

traversal of graph

Complexity analysis:

Let, n = number of nodes in the graph, and

m = number of enque() operations, whose position will be

changed in the retroactive queue.

The time complexity estimated is O(m log n)

Explanation of m:

In real life applications, for example, a large scale railway

network, number of nodes is extremely large, and removal of

few nodes affects a small part of network. That is, in real life

applications, where retroactive approach is applied, m is very

small in comparison to n. Therefore, retroactive solution will be

of time complexity O(log n) when m << n. This will be the

case when number of nodes deleted from graph is small.

For the above case in consideration, overall comparison of

complexities is as follows

Technique Space Complexity Time Complexity

Rollback O(n) O(n)

Persistent O(n
2
) O(n)

Retroactive O(n) O(log n)

B. Retroactive Queue: Reducing Effect of
Network Delay in Client Server
Architecture

In a standard client-server model, the server can be seen as

holding a data structure, and clients send update or query

QUEUE OPERATIONS

1 enque(1)

2 4 dequeue (1)enque(2), enque(4)

4 3 dequeue (2)enque(3)

3 5 dequeue (4)enque(5)

5 6 dequeue (3)enque(6)

6 8 dequeue (5)enque(8)

8 dequeue (6)

7 9 dequeue (8)enque(7), enque(9)

9 dequeue (7)

 dequeue (9)

QUEUE OPERATIONS

1 enque(1)

2 4 dequeue (1)enque (2), enque (4)

4 3 dequeue (2)enque (3)

3 5 dequeue (4)enque (5)

5 6 dequeue (3)enque (6)

6 8 dequeue (5)enque (8)

8 dequeue (6)

7 9 dequeue (8)enque (7), enque (9)

9 dequeue (7)

 dequeue (9)

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

32

operations. When the order of the requests is important (e.g.,

Internet auctions), the users can send a timestamp along with

their requests. The server should execute the operations in the

order they were sent. If a request is delayed by the network, it

should be retroactively executed at the appropriate time in the

past.

Figure 3. Basic Client-Server Architecture (Ref. [10])

To achieve this, partially retroactive queue is maintained by the

server for handling requests from clients. So that the requests

are in order they were sent, rather than in order, they were

received.

C. Retroactive Union-Sameset: Recovery
of Weather-Forecasting Data

In places where, data pertaining to weather is taken from

different weather stations and is finally reported to a central

computer. Various stations are placed in small groups, thus an

average of the data is computed. Small groups are then

combined to form larger groups, and now an average of the data

is taken and so-on until we are left with only single group. Final

data evaluated is, thus, analyzed and various statistics are

drawn out of it.

1) Problem 1: Suppose, we come to know that one of the

weather station got malfunctioned at time ‘t’ in the past.

Normal Solution: Rollback to the point where station got

malfunctioned.

The solution has linear complexity and is inefficient, especially

in the cases where the number of stations affected is

significantly less than the total number of stations. Therefore,

we come up with the retroactive solution.

Retroactive Solution: The stations which would have been

affected by malfunctioning of that station, only data of those

needs to be retroactively modified. That particular group of

affected stations can be identified by retroactive query,

sameset(x,y).

Figure 4. Group of Weather-Stations with one Malfunctioned

Thus, data can be recovered and it would indicate as if the

malicious operation never occurred.

2) Problem 2: Suppose, we come to know that one of the

weather station was missed to be considered before.

Normal Solution: Rollback to the point where station was

missed to be considered.

The solution has linear complexity and is inefficient, especially

in the cases where the number of stations affected is

significantly less than the total number of stations. Therefore,

we come up with the retroactive solution.

Retroactive solution: The stations whose data would have been

affected by neglecting that station, only data of those need to be

retroactively modified. That particular group of affected

stations can be identified by retroactive operation, insert

(Union(x,y),t).

Figure 5. Group of Weather-Stations with one Missed

The data from the missed station can be used to evaluate final

data again by applying retroactively adding the station into the

group of stations. Thus, data can be analyzed again and it

would indicate as if that station was already under

consideration.

ACKNOWLEDGEMENT

We thank Daniel Sleator for his helpful pointers on Link-Cut
Trees [4] and Splay Trees [3], Jeff Erickson for his lectures [8]
on Link-Cut Trees. And, a special thanks to Harshit Gupta,
Konark Gill and Abhinav Shrivastava for their helpful and
healthy discussions and comments.

REFERENCES

[1] Demaine, E. D., Iacono, J., and Langerman. “Retroactive data structures”.
Journal of the Association for Computing Machinery, 281-290, 2004.

[2] Fleischer, R. “A simple balanced search tree with O(1) worst-case update
time”. Int. J. Found. Comput. Sci. 7, 2, 137–149, 1996.

Central Computer

Missed Station

Affected
group

Normal Stations

Central Computer

Malfunctioned Station Affected Stations

Normal Stations

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

33

[3] Sleator, D. D. and Tarjan, R. E. “Self-adjusting binary search trees
Journal ACM 32 (1985), pp. 652-686.

[4] Sleator, D. D. and Tarjan, R. E. “A data structure for dynamic trees.” J.
Comput. Syst. Sci. 26, 3, 362–381, 1983.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford
Stein. “Introduction to Algorithms”. Copyright © 2001 by The
Massachusetts Institute of Technology, Second edition . Tata McGraw-
Hill, 2001.

[6] Sylvain Conchon, Jean-Christophe Filliˆatre, “A Persistent Union-Find
Data Structure”, Workshop on ML 2007.

[7] Horowitz E., Sahni S., and Anderson-Freed S. “Fundamentals of Data
Structures” in C. W.H. Freeman and Company, 1998.

[8] http://granmapa.cs.uiuc.edu/~jeffe/teaching/data-structures/notes/07-
linkcut.pdf

[9] http://www.boost.org/doc/libs/1_37_0/libs/graph/doc/incremental_compo
nents.html

[10] http://www.onsitepcdoc.com/network.html

http://granmapa.cs.uiuc.edu/~jeffe/teaching/data-structures/notes/07-linkcut.pdf

