
UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

1

Debug and Optimization Techniques for Performance

Enhancement of Termination Application in Real

Time System

Sandeep Malik

NMG

Freescale Semiconductor Ltd

Noida, India

Yashpal Dutta

NMG

Freescale Semiconductor Ltd

Noida, India

Abstract— Due to the rapid increase in network services per

network node, the need for high throughput infrastructure is

growing. Throughput and latency are two important criteria that

need to be considered while working on Real Time Embedded

Systems. With the advent of Real Time Operating systems, low

latency can be achieved, but sometimes at the cost of

performance. The situation becomes complex if the system has a

networking termination application in the user-space operating

with the kernel space driver.

The paper presents how changes in Real Time Linux impose

complexity in a network application both in kernel and user

space. This paper also discusses ideas to identify problems and

fixes available using Linux debugging tools. This paper concludes

by sharing performance improvement data achieved in a user

space networking application.

Keywords— Performance, Real Time, Linux, Femto Cell,

Termination, Networking, Debugging, User Space

I. Introduction
With the increased Internet usage and the availability of

high network bandwidth, more and more IP traffic flows per
network node. Along with high traffic throughput
requirements, systems also demand low latency for certain
services like the Femto Cell market. The data traffic
processing in a Femto Cell use case can be thought of as two
parts. One part interacts with the wireless side of the network
and the second part interacts with the wire-line side. The
wireless part of network has critical time line requirements
that need to be met, whereas the wire-line side has throughput
requirements. The system needs to address both these timing
and throughput requirements. The low latency requirements
can be met using the Real Time System (Linux with RT patch
in our case). The RT patch has a big impact on throughput and
the system needs to be tweaked to obtain the best of both
latency and throughput.

The usage of Linux with RT patch has been available for
quite some time. The motivation to write this paper arose
when one user-space networking application running on native
Linux was being ported to Linux with Preempt RT patch.
After porting the user space application, the overall
performance dropped by more than 50%.

This paper discusses the debug techniques used to
determine the reason for the system performance drop and
attempts at solutions.

To validate the design approaches, Freescale’s P2020[4]
platform was used. This platform was configured for Power
Architecture Technology core running at 1 GHz with System
Bus running at 500MHz and DDR operating at 400MHz. The
system used Linux 2.6.33 with the RT patch applied. This
paper also explains the incremental performance
enhancements that were observed when these design
approaches were tested on the Freescale P2020 platform.

Let’s start with an overview of the system from a software
perspective, which indicates the components involved in the
packet processing path for a user space termination use case.
Here the preferred system is receiving encrypted packets from
the IPSec tunnel in the network, which after decryption needs
to be provided to the user space for further processing. The
user space application, after processing, provides these packets
to the kernel space for one more level of security operation to
be performed before transmitting the packet to network.

Figure 1. System overview from software prespective

The system has following the processing units:

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

2

1) Ethernet Rx interrupt handler (Red Dotted Line).

2) Ethernet bottom half running in netif_rx SOFT_IRQ.

3) SEC(Security Block) Interrupt Handler.

4) SEC Bottom half running in netif_rx SOFT IRQ.

5) User space application responsible for receiving the

 packets from kernel space post-decryption processing and

giving it back to kernel space.

6) Ethernet Tx completion interrupt handler for cleaning

up of Tx queue.

In this system the user space process is supposed to run at

the highest priority so that whenever there is some job to be
done by the user space, it will preempt other processing units
and start processing the packets.

II. Debug Techniques

Debugging is broadly categorized in two classes:

1) Functional Debugging (Static): Mainly used to debug

and fix issues, if any, in the system functionality.

2) Performance Debugging (Dynamic): Mainly used to

identify and fix issues in system performance. This includes

debugging latency and throughput.

This paper discusses Performance Debugging. Profiling and

tracing support for Linux kernel can be used to debug latency

and performance issues. The following section covers the

available tools in Linux that can be used for performance

debugging.

A. RT-Test Suite
This suite consists of multiple utilities. Cyclic-test, which

is a part of the RT-Test suite, can be used to determine RT
capability of a given system. The presence of IO activities or
a specific stress condition with cyclic-test can be used to check
worst-case latency.

Cyclic-test clubbed with “-b” option can be used to fight
high latencies. If latency exceeds the threshold provided with
“-b” option, function tracing is written to trace ring-buffer and
cyclic-test aborts. This function traces data can further be used
to identify the cause of high latency.

B. Ftrace
FTrace is a tracing utility directly available in Linux under
“Kernel hacking” configuration option. Ftraces provides
features to assist tracking down Linux kernel problems. Kernel
tracing capability using ftraces helps in understanding internal
kernel activities. If enabled, tracing directory is available in
debug file-system. In addition to functional debugging, ftrace
helps in latency analysis. Kernel provides configuration
options to enable ftraces[2]. Various tracing options can be
enabled in Linux configuration and can be seen from
“available_tracers” file in tracing directory.

C. OProfile
Analyzing the performance impact of system loading on

application code can be done with profiling. Oprofile is one

such profiling tool-set for kernel and application profiling.

Oprofile on the Powerpc architecture helps identify issues like

poor-cache utilization, branch mis-predictions, low IPC, and

L1/L2 TLB misses using the core’s Performance Monitor

support. Profiling support [CONFIG_PROFILING and

CONFIG_OPROFILE] must be enabled in Kernel

configuration for Oprofile[6] to work.

III. Analysis of Preempt RT Patch
Impact

Using the above-mentioned debugging techniques, the RT

System was profiled. The analysis of the profiling data for the

RT and Non RT system revealed the following findings.

A. Interrupt handlers being converted
to Kernel Threads
The RT-Preempt patch in Linux converts the interrupt

handlers to kernel threads to ensure that the real time timelines
for a process have been met. Due to this change, scheduler
invocation is required even to schedule the interrupt handlers
Kthreads i.e. Top Half, which in non-RT case are invoked
from the same context in which the system is executing. In a
heavily loaded system, most of the time the interrupt
processing keeps on getting preempted by other interrupts.
This additional preemption eventually causes context switch
and thus adds to latencies.

B. Increased overhead of context
switching
With the introduction of Preempt RT patch in Linux, most

of the kernel code has become preemptible. The profiling data
shows that context switching overhead from user-space to
kernel space takes around 3x more cycles then a similar Non
RT based implementation. This overhead is mainly due to the
checks required in the scheduler to maintain the real time
behavior of the system.

When referring to the context switch from kernel space to
user space, the reference solution is a termination application
using the socket interface for communication with kernel. In
this socket interface, the type of socket used is RAW sockets
and PACKET_MMAP option is used for zero copy
implementation.

IV. Solutions for These Problems
This section shares design techniques that can be used to

address the above issues.

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 1 [ISSN 2250 - 3765]

3

A. Making the interrupt handlers as
non kernal thread
While doing the performance analysis using oprofile[6]

and ftraces[2], it was found that lots of CPU cycles were
consumed due to the interrupt handlers getting preempted
frequently. Due to the preemption, the ISR (Top Half) often
didn’t even get a chance to schedule bottom-half so the bottom
half processing was getting delayed and the system had an
unnecessary overhead of context switching without doing any
fruitful work. Apart from the context switch, there is another
overhead caused by the need of invocation of scheduler to
schedule the ISR kernel thread. This additional overhead of
scheduler invocation can be avoided for selective interrupts
which have short ISR and are called very frequently.

The overhead of context switching and scheduler
invocation due to the interrupt handlers being executed as
kernel threads was overcome by replacing these kernel threads
with Hard ISR’s. The hard ISR’s can’t be preempted by other
kernel threads in the system and can be invoked from the same
context in which the system is executing when the interrupt
occur. This exercise helped improve throughput by about
15%.

B. Avoiding the context switch overhead
On further analysis of the context switch overheads, it was

observed that the changes introduced at the time of context
switching by Preempt RT patch were necessary to guarantee
real-time responsiveness. Hence, to resolve the performance
issue, we focused was on reducing the number of context
switches in the system.

The kernel network driver was designed to use NAPI to
minimize the interrupts overhead but the interrupts in the
system were still affecting the system performance. To
overcome this apart from NAPI; interrupt coalescing was
enabled in the hardware. Benchmarking results show there is
around 30% performance enhancement in the system
throughput when this approach of combining the interrupts
together clubbed with NAPI.

After analyzing the profiling data, it was seen that the
process executing in kernel space used to wake up the process
running in user-space every time there is a processed packet
available. This causes the user space process to wake up and to
pick up one packet and give the same to the kernel via socket
interface. This waking up of user space process for every
packet caused the context switching from kernel space to user
space for every packet entering the system. This was a big
overhead and needed to be resolved to address the
performance issue

To resolve this, a NAPI like mechanism was implemented
in the kernel processing part where the processed packets are
accumulated and once either a certain threshold amount of
packets are processed or a certain amount of time has elapsed,
the trigger was not given to the user space thread. Similar
implementation was done at the user level processing unit it

receives packets from kernel space but does not give the
packets back to the kernel space task until a certain number of
packets are collected by user space task.

Benchmarking results show that there is around 30%
performance enhancement in the system throughput when this
approach NAPI like implementation was done at user space as
well as kernel space.

Thus after implementing all the above techniques the
system throughput increased more than 100% and the overall
system throughput got better both in terms of bandwidth as
well as overall response time of the system.

V. Conclusion
Various techniques to debug and improve the system

performance of a network packet processing system that

involves communication between user space process and

kernel space drivers, and evaluates them on a dual core

platform P2020 from the Freescale QorIQ P2 platform series

have been discussed.

Figure 2. Performance scaling chart

Figure-2 shows the performance scaling chart for the

reference system after implementing these ideas on

preemptive RT kernel.
Using the design approaches explained in this paper, the

system packet termination throughput can be improved by
around 70-100%.

References
[1] https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO+rt.wiki.ke

rnel.org+RT_PREEMPT_HOWTO

[2] Ftrace - http://lwn.net/Articles/290277/

[3] A realtime preemption overview - http://lwn.net/Articles/146861/

[4] Freescale P2020 QorIQ processor:
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P20
20.

[5] NAPI (New API) -
 http://www.linuxfoundation.org/collaborate/workgroups/networking/na
pi.

[6] Oprofile – http://oprofile.sourceforge.net

http://www.linuxfoundation.org/collaborate/workgroups/networking/napi
http://www.linuxfoundation.org/collaborate/workgroups/networking/napi

