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     Abstract—Scheduling is the main difficulty in heterogeneous 

computing (HC) systems in achieving the high performance. In 

this paper, a meta-heuristic approach based on Particle Swarm 

Optimization (PSO) is adopted for solving task scheduling 

problem. PSO is a population-based algorithm to find the optimal 

solutions, but its performance is decreased when considering 

multi-optimization problem. In this paper, an Adaptive Weighted 

Particle Swarm Optimization is proposed for multi-objective 

optimization. AWPSO is an efficient and simple tool for multi-

objective and multi-dimensional problem. AWPSO enhance the 

global search ability and to overcome the local optimum by 

introducing an acceleration factor. The goal is to minimize the 

makespan and flowtime. The experimental results showed that 

the performance of the proposed method is effective compared 

with other heuristic optimization technique namely PSO in 

finding the optimal solutions.  

Keywords—Scheduling, Adaptive Weighted Particle Swarm 
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I.  INTRODUCTION  

Real-world HC systems are complex combinations of 
hardware, software and network components. The problem of 
scheduling a set of dependent or independent tasks in a 
distributed computing system is a well-studied area. The most 
common goal of scheduling is to minimize the expected 
runtime of a task set. Optimal scheduling relates to mapping a 
set task to a set of resources to proficiently achieve the abilities 
of the systems. In this paper, the multiprocessor scheduling is 
considered. The main motivation for multiprocessor scheduling 
is the desire for increased speed in the execution of a workload. 
Parts of the workload, called tasks can be spread across several 
processors and thus be executed more quickly than on a single 
processor.  

In this paper, the tasks are independent and non-pre-
emptive and here the static allocation in heterogeneous systems 
is considered. The static allocation [1] can be applied to a large 
set of real-world applications that are able to be formulated in a 
manner which allows for deterministic execution. Some 
advantages of these techniques over dynamic ones, which 
determine the module assignment during runtime, are that, 
static techniques have no runtime overhead and they can be 
designed using very complex algorithmic mechanisms which 
fully utilize the known properties of a given application. The 
main objective of this paper is to minimize the makespan and 

flowtime. The tasks are assigned to processors and the 
completion time is called as makespan (the maximum total 
processing time is minimized). Flowtime is the sum of 
completion times of all the jobs. In this paper, Adaptive 
Weighted Particle Swarm Optimization (AWPSO) is presented 
helps to improve the performance of PSO in multi-objective 
optimization. The proposed method assigns the tasks to 
processors and avoids becoming trapped in local optimum and 
also leads to faster convergence towards the targeted solution.  

The residue of this paper is structured as: section 2 analyses 
the algorithms that are applied to the task scheduling, section 3 
formulates the problem, in section 4 PSO is briefly described, 
and section 5 illustrates the proposed method and section 6 
reports the experimental results. Finally section 7 concludes the 
work. 

II. RELATED WORK 

Optimal mapping of independent computational tasks to 
available machines in a distributed computing system is a NP-
hard problem as stated earlier and as such, it is a subject to 
various heuristic and meta-heuristic algorithms. The heuristics 
applied to the task scheduling problem include sufferage [3], 
min-min, max-min [4], LJFR-SJFR [5], min-max [6], etc. The 
most popular of meta-heuristic algorithms are Genetic 
algorithm (GA) [7], simulated annealing (SA) [8], ant colony 
optimization (ACO) [9] and particle swarm optimization (PSO) 
[10]. The above referred heuristics and meta-heuristics aimed 
at minimizing a single criteria, the makespan of the schedule. 

Different criteria can be used for evaluating the efficacy of 
scheduling algorithms. Few attempts have been made to 
optimize multiple criteria. [6] Investigates the efficacy of five 
popular heuristics for minimizing makespan and flowtime on 
HC environments with various characteristics of both machines 
and tasks. Page and Naugton [7] used a genetic algorithm 
method for scheduling HC systems, in this method the 
scheduling strategy operates in a dynamically changing 
computing resource environment and adapts to variable 
communication costs and variable ability of processing 
resources. G.Subashini and M.C.Bhuvanesawari [12] used 
NSPSO for scheduling the tasks in heterogeneous systems. In 
HPSO [14] used the combination of PSO and SA for task 
scheduling problem with dynamically varying inertia weight. 
Gen and Cheng propose adaptive weight approach genetic 
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algorithm (AWA GA) [13], it used information of the current 
population to adjust weight of different objectives. [11] Used 
adaptive weighted sum method for multi-objective 
optimization problems. 

III. PROBLEM DEFINITION 

This paper considers the task scheduling problem with the 
following scenario. Let the set of independent tasks T= {T1, 
T2,…,Tn} are scheduled on set of m processors 
P={P1,P2,…Pm} on the HC system. To model the problem 
estimation or prediction of the computational load of each task, 
the computing capacity of each resource, and an estimation of 
the prior load of each one of the resources is required. This is 
the Estimated Time to Compute (ETC) matrix. An ETC matrix 
is an n x m matrix, which n is the number of tasks and m is the 
number of machines. In ETC matrix one row comprises the 
estimated execution time for a given task on each machine and 
one column compromises the estimated execution time of a 
given machine for each task. To formulate the objective where,  
Ci,j (i €{1,2,…,m}, j € {1,2,…,n}) is the execution time for 
executing j

th 
task in i

th
 machine and Wi ( i €{1,2,…,m}) is the 

preceding workload of machine Mi. The time required for 
machine Mi to complete the jobs is shown in the equation (1) 
[10].  

∑Cij + Wi                                                                                                                       (1) 

      The makespan (2) [10] and flowtime (3) [12] is minimized 
and it can be estimated as  

Makespan = max {∑ Cij + Wi    }, i € {1, 2,.., m}                   (2) 

 

Flowtime = m

i 1



     ∑ Cij                                                (3)                                                                                                               

      By minimizing the makespan the set of tasks can be 

executed promptly and by minimizing the flowtime exploit the 

computing environment in effectively. The goal of the 

scheduler is to minimize the makespan and flowtime.  

IV. PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimization [10] is a population based 
stochastic optimization technique developed by Dr.Eberhert 
and Dr.Kennedy in 1995. PSO simulates the behaviors of bird 
flocking. That is a group of birds are randomly searching for 
food in an area. But al birds know how far the food. 

So the best strategy is to follow the bird which is nearest to 
the food. PSO learned from the scenario and used it to solve the 
optimization problems. In PSO, each single solution is a bird 
(particle) in the search space. All of particles have fitness 
values which are evaluated by the fitness function to be 
optimized, and have velocities which direct the flying of the 
particles. The particles fly through the problem space by 
following the current optimum particles. PSO is initialized with 
a group of random particles (solutions) and then searches for 
optima by updating generations. For each iteration, all the 
particles are updated by following two best values. The first 
one is the best solution (fitness) it has achieved and this value 
is called personal best position or pbest. Another best value is 
tracked by the particle swarm optimizer, obtained so far by any 

particle in the population. This best value is a global best and 
called as neighborhood best position or gbest. When a particle 
takes part of the population as its topological neighbors, the 
best value is a local best and is called pbest. 

After finding the two best values, the particle update its 
velocity Vij using equation (4) and position using equation (5) 
[12]. 

Vij = W * Vij + [c1 * rand1 (pbestij – particleij) + c2 * rand2 

(gbestij – particleij)]                                                                (4) 

 

particleij = particleij + Vij                                                                                      (5) 

 

where c1 and c2 are the cognitive coefficient, particleij is the 

current particle and rand1 and rand2 are random real numbers 

drawn from U (0, 1). The c1 shows how much the particle 

trusts its own past experience, it is called cognitive parameter, 

and c2 shows how much it trusts the swarm, it is called the 

social parameter. The inertia weight w controls the momentum 

of the particle a large inertia weight pressures towards global 

exploration while a smaller inertia weight pressures towards 

global exploration fine tuning the current search area. The 

inertia weight is introduced in equation (6) to balance the 

global and local search abilities. The large inertia weight 

facilitates global search while the small inertia weight 

facilitates local search.  

      The introduction of the inertia weight also eliminates the 

requirement of setting the maximum velocity. In PSO with 

fixed inertia, the inertia value is fixed to a constant value of 

0.8 [14] during the whole run of the algorithm.  

 

W = 0.8;                                                                                 (6) 

V. ADAPTIVE WEIGHTED PARTICLE SWARM OPTIMIZATION  

The standard PSO is selected as a parent algorithm for 
AWPSO. The basic problem in PSO, it is started with a large 
inertia weight but is decreased over time due to this 
performance of PSO is declined. So, in order to obtain an 
optimized solution, the AWPSO uses the acceleration factor to 
improve the performance of PSO for multi-objective 
optimization. The acceleration term will increases as the 
number of iterations increases, which will help to improve the 
global search ability and also to skip from the local optimum. 
For AWPSO, the velocity is updated using the equation (7) and 
position using the equation (5) [12].  

Vij = W * Vij + α [c1 * rand1 (pbestij – particleij) + c2 * rand2 

(gbestij – particleij)]                                                                (7) 
  

For AWPSO algorithm, the inertia weight W is shown in the 
equation (8) [15].       

W= W0 + r (1-W0)                                                                  (8) 

                                                                                                       
where W0 is the initial positive constant in the interval [0, 1] 
and r is random number obtained. From a uniform random 
distribution function in the interval [0, 1]. The suggest range 
for W0 is [0, 0.5], which make the weight w randomly varying 
between 0 and 1. 
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Acceleration factor (9) [15] is formulated as 

α = α0 + 
t

T
                                                                             (9) 

where, t is the current generation, T denotes the number of 

generations and range for α0 is [0.5, 1]. 

Pseudo code of AWPSO is as follows, 

 

Start 

Create a swarm with P particles 

For each particle initialize the position and velocity randomly; 

    Repeat 

       For each particle P=1…N do 

           Calculate the fitness value of each particle; 

           Update pbest and gbest for each particle;              

           Update velocity using equation (7) and update          

            position using equation (5); 

     End 

 Until stopping condition is true; 

End 

 

A. Particle Generation 

In the initial step, the independent tasks are given as inputs 
for generation of particles. Each particle represents one 
solution to the problem and a set of particles is referred to as 
population. The first generated particle is termed as initial 
population (Swarm). The example for particle generation is 
described as follows  

If task is given as 3 then the particles are generated as 
123,231,321,132,213,312. 

B. Processor Allocation 

The processors are allocated to the task, randomly. Once 
the task is assigned to the processor and the same task will not 
be further assigned to any other processors. The example for 
processor allocation is described as follows  

     From the example of particle generation, consider the 

generated particle123 is allocated to 2 processors. In the table 

below particle1 is allocated to processor1, particle2 is 

allocated to processor2 and particle3 is allocated to processor1 

in this manner for all the generated particles the processors are 

allocated. 
TABLE  I. PROCESSOR ALLOCATION TABLE 

 
Generated Particles 

 

Processors 

Particle1 Processor 1 

Particle2 Processor2 

Particle3 Processor1 

C. Fitness Calculation 

The fitness function measures to what extent the particle 
solution S satisfies the objective of the optimization problem. 
The fitness function F(x) is a sum of two objectives, the 
makespan and flowtime as given by the equation (2) and (3). 
The approach called adaptive weighted sum approach [11] is 
used to weight the sum of the objectives. Each particle 
evaluation is given by the equation (10) [11]. 

      
  =            

    + (1-     )   ,   m≥2                           (10)                                                                                                                                                                                                                                    

 

where m is the number of objectives, αi is the i
th

 weighting 

factor in the interval of (0, 1) and J is the objective function.  

D. Particle Updation 

At first the particle’s velocity is updated using the equation 
(7) and then it is used for updating the particle’s position using 
the equation (5). Velocity defines how quickly a particle 
changes location and position represents a possible solution 
point in the problem space. In PSO, every particle flutters 
through the solution space by equations (7) and (5) in each 
iteration. The loop is terminated when given iterations are met. 
When the termination criteria are met, the best solution and its 
corresponding objective function values as the optimized value 
are returned. 

VI. EXPERIMENTAL RESULTS 

An effective scheduling algorithm has been developed to 
schedule the tasks onto processors in a distributed computing 
system. In order, to evaluate the performance of the proposed 
method, the approach was compared with PSO for task 
assignment problem in multiprocessor systems. The goal of the 
scheduler in these methods is to minimize the makespan and 
flowtime. These methods are implemented using Java. 

For the proposed method the following ranges of parameter 
values were tested: c1 and c2 = [1, 2], w0 = [0, 1], r = [0, 1] and 
rand1 and rand2 = [0, 1]. Based on the experimental results the 
proposed AWPSO algorithm performs best under the following 
settings: r= 0.5, c1= c2= 1.2, w0 = 0.5, w1=w2=0.5, rand1 = 
rand2=0.2, w= 0.8 (fixed Inertia weight for PSO) and α0 = 0.5.  

In this section, both the AWPSO and PSO algorithms are 
applied and the results are plotted. The plots are placed for the 
same number of tasks but for different number of iterations, 
population sizes and processors.  

 

 

 

 
 

 

 
 

 

 
 

  



UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 2 [ISSN 2250 - 3765] 
 

77 

 

Figure 1. AWPSO and PSO for varying Number of Processors 
 

 

 

 

 

 

 

 

 

 

 

Figure 2. AWPSO and PSO for varying Population sizes 

 

 

 

 

 

 

 

 

 

Figure 3. AWPSO and PSO for varying Number of Iterations 

 

From the figures above i.e., Figure 1, Figure 2 and Figure 3 
showed that the proposed algorithm Adaptive Weighted 
Particle Swarm Optimization outperforms other methodology 
namely PSO. Thus the task scheduling is better in AWPSO 
than PSO.   

VII. CONCLUSION 

In distributed computing systems, the assignment of tasks 

to set of processors is important for effective utilization of 

resources. In this paper, the proposed algorithm AWPSO finds 

optimal solutions by minimizing the makespan and flowtime 

simultanously. The Experimental results proved that the 

AWPSO algorithm shows better results compared to the PSO 

algorithm with fixed Inertia weight. However, further work 

could be carried out with AWPSO algorithm for scheduling 

the jobs with precedence constraints or in dynamic 

environments.   
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