
UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 2 [ISSN 2250 - 3765]

74

Adaptive Weighted Particle Swarm Optimization for

Scheduling Independent Tasks

 Vidya G Sarathambekai S Yamunadevi S P

2
nd

 Yr PG IT Asst. Professor of IT 2
nd

 Yr PG IT

PSG College of Technology PSG College of Technology PSG College of Technology

Coimbatore, India Coimbatore, India Coimbatore, India

vidya.ganesan89@gmail.com vrs070708@gmail.com aarthi.yamu@gmail.com

 Abstract—Scheduling is the main difficulty in heterogeneous

computing (HC) systems in achieving the high performance. In

this paper, a meta-heuristic approach based on Particle Swarm

Optimization (PSO) is adopted for solving task scheduling

problem. PSO is a population-based algorithm to find the optimal

solutions, but its performance is decreased when considering

multi-optimization problem. In this paper, an Adaptive Weighted

Particle Swarm Optimization is proposed for multi-objective

optimization. AWPSO is an efficient and simple tool for multi-

objective and multi-dimensional problem. AWPSO enhance the

global search ability and to overcome the local optimum by

introducing an acceleration factor. The goal is to minimize the

makespan and flowtime. The experimental results showed that

the performance of the proposed method is effective compared

with other heuristic optimization technique namely PSO in

finding the optimal solutions.

Keywords—Scheduling, Adaptive Weighted Particle Swarm

Optimization,accelaration factor, makespan, flowtime

I. INTRODUCTION

Real-world HC systems are complex combinations of
hardware, software and network components. The problem of
scheduling a set of dependent or independent tasks in a
distributed computing system is a well-studied area. The most
common goal of scheduling is to minimize the expected
runtime of a task set. Optimal scheduling relates to mapping a
set task to a set of resources to proficiently achieve the abilities
of the systems. In this paper, the multiprocessor scheduling is
considered. The main motivation for multiprocessor scheduling
is the desire for increased speed in the execution of a workload.
Parts of the workload, called tasks can be spread across several
processors and thus be executed more quickly than on a single
processor.

In this paper, the tasks are independent and non-pre-
emptive and here the static allocation in heterogeneous systems
is considered. The static allocation [1] can be applied to a large
set of real-world applications that are able to be formulated in a
manner which allows for deterministic execution. Some
advantages of these techniques over dynamic ones, which
determine the module assignment during runtime, are that,
static techniques have no runtime overhead and they can be
designed using very complex algorithmic mechanisms which
fully utilize the known properties of a given application. The
main objective of this paper is to minimize the makespan and

flowtime. The tasks are assigned to processors and the
completion time is called as makespan (the maximum total
processing time is minimized). Flowtime is the sum of
completion times of all the jobs. In this paper, Adaptive
Weighted Particle Swarm Optimization (AWPSO) is presented
helps to improve the performance of PSO in multi-objective
optimization. The proposed method assigns the tasks to
processors and avoids becoming trapped in local optimum and
also leads to faster convergence towards the targeted solution.

The residue of this paper is structured as: section 2 analyses
the algorithms that are applied to the task scheduling, section 3
formulates the problem, in section 4 PSO is briefly described,
and section 5 illustrates the proposed method and section 6
reports the experimental results. Finally section 7 concludes the
work.

II. RELATED WORK

Optimal mapping of independent computational tasks to
available machines in a distributed computing system is a NP-
hard problem as stated earlier and as such, it is a subject to
various heuristic and meta-heuristic algorithms. The heuristics
applied to the task scheduling problem include sufferage [3],
min-min, max-min [4], LJFR-SJFR [5], min-max [6], etc. The
most popular of meta-heuristic algorithms are Genetic
algorithm (GA) [7], simulated annealing (SA) [8], ant colony
optimization (ACO) [9] and particle swarm optimization (PSO)
[10]. The above referred heuristics and meta-heuristics aimed
at minimizing a single criteria, the makespan of the schedule.

Different criteria can be used for evaluating the efficacy of
scheduling algorithms. Few attempts have been made to
optimize multiple criteria. [6] Investigates the efficacy of five
popular heuristics for minimizing makespan and flowtime on
HC environments with various characteristics of both machines
and tasks. Page and Naugton [7] used a genetic algorithm
method for scheduling HC systems, in this method the
scheduling strategy operates in a dynamically changing
computing resource environment and adapts to variable
communication costs and variable ability of processing
resources. G.Subashini and M.C.Bhuvanesawari [12] used
NSPSO for scheduling the tasks in heterogeneous systems. In
HPSO [14] used the combination of PSO and SA for task
scheduling problem with dynamically varying inertia weight.
Gen and Cheng propose adaptive weight approach genetic

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 2 [ISSN 2250 - 3765]

75

algorithm (AWA GA) [13], it used information of the current
population to adjust weight of different objectives. [11] Used
adaptive weighted sum method for multi-objective
optimization problems.

III. PROBLEM DEFINITION

This paper considers the task scheduling problem with the
following scenario. Let the set of independent tasks T= {T1,
T2,…,Tn} are scheduled on set of m processors
P={P1,P2,…Pm} on the HC system. To model the problem
estimation or prediction of the computational load of each task,
the computing capacity of each resource, and an estimation of
the prior load of each one of the resources is required. This is
the Estimated Time to Compute (ETC) matrix. An ETC matrix
is an n x m matrix, which n is the number of tasks and m is the
number of machines. In ETC matrix one row comprises the
estimated execution time for a given task on each machine and
one column compromises the estimated execution time of a
given machine for each task. To formulate the objective where,
Ci,j (i €{1,2,…,m}, j € {1,2,…,n}) is the execution time for
executing j

th
task in i

th
 machine and Wi (i €{1,2,…,m}) is the

preceding workload of machine Mi. The time required for
machine Mi to complete the jobs is shown in the equation (1)
[10].

∑Cij + Wi (1)

 The makespan (2) [10] and flowtime (3) [12] is minimized
and it can be estimated as

Makespan = max {∑ Cij + Wi }, i € {1, 2,.., m} (2)

Flowtime = m

i 1

 ∑ Cij (3)

 By minimizing the makespan the set of tasks can be

executed promptly and by minimizing the flowtime exploit the

computing environment in effectively. The goal of the

scheduler is to minimize the makespan and flowtime.

IV. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization [10] is a population based
stochastic optimization technique developed by Dr.Eberhert
and Dr.Kennedy in 1995. PSO simulates the behaviors of bird
flocking. That is a group of birds are randomly searching for
food in an area. But al birds know how far the food.

So the best strategy is to follow the bird which is nearest to
the food. PSO learned from the scenario and used it to solve the
optimization problems. In PSO, each single solution is a bird
(particle) in the search space. All of particles have fitness
values which are evaluated by the fitness function to be
optimized, and have velocities which direct the flying of the
particles. The particles fly through the problem space by
following the current optimum particles. PSO is initialized with
a group of random particles (solutions) and then searches for
optima by updating generations. For each iteration, all the
particles are updated by following two best values. The first
one is the best solution (fitness) it has achieved and this value
is called personal best position or pbest. Another best value is
tracked by the particle swarm optimizer, obtained so far by any

particle in the population. This best value is a global best and
called as neighborhood best position or gbest. When a particle
takes part of the population as its topological neighbors, the
best value is a local best and is called pbest.

After finding the two best values, the particle update its
velocity Vij using equation (4) and position using equation (5)
[12].

Vij = W * Vij + [c1 * rand1 (pbestij – particleij) + c2 * rand2

(gbestij – particleij)] (4)

particleij = particleij + Vij (5)

where c1 and c2 are the cognitive coefficient, particleij is the

current particle and rand1 and rand2 are random real numbers

drawn from U (0, 1). The c1 shows how much the particle

trusts its own past experience, it is called cognitive parameter,

and c2 shows how much it trusts the swarm, it is called the

social parameter. The inertia weight w controls the momentum

of the particle a large inertia weight pressures towards global

exploration while a smaller inertia weight pressures towards

global exploration fine tuning the current search area. The

inertia weight is introduced in equation (6) to balance the

global and local search abilities. The large inertia weight

facilitates global search while the small inertia weight

facilitates local search.

 The introduction of the inertia weight also eliminates the

requirement of setting the maximum velocity. In PSO with

fixed inertia, the inertia value is fixed to a constant value of

0.8 [14] during the whole run of the algorithm.

W = 0.8; (6)

V. ADAPTIVE WEIGHTED PARTICLE SWARM OPTIMIZATION

The standard PSO is selected as a parent algorithm for
AWPSO. The basic problem in PSO, it is started with a large
inertia weight but is decreased over time due to this
performance of PSO is declined. So, in order to obtain an
optimized solution, the AWPSO uses the acceleration factor to
improve the performance of PSO for multi-objective
optimization. The acceleration term will increases as the
number of iterations increases, which will help to improve the
global search ability and also to skip from the local optimum.
For AWPSO, the velocity is updated using the equation (7) and
position using the equation (5) [12].

Vij = W * Vij + α [c1 * rand1 (pbestij – particleij) + c2 * rand2

(gbestij – particleij)] (7)

For AWPSO algorithm, the inertia weight W is shown in the
equation (8) [15].

W= W0 + r (1-W0) (8)

where W0 is the initial positive constant in the interval [0, 1]
and r is random number obtained. From a uniform random
distribution function in the interval [0, 1]. The suggest range
for W0 is [0, 0.5], which make the weight w randomly varying
between 0 and 1.

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 2 [ISSN 2250 - 3765]

76

Acceleration factor (9) [15] is formulated as

α = α0 +
t

T
 (9)

where, t is the current generation, T denotes the number of

generations and range for α0 is [0.5, 1].

Pseudo code of AWPSO is as follows,

Start

Create a swarm with P particles

For each particle initialize the position and velocity randomly;

 Repeat

 For each particle P=1…N do

 Calculate the fitness value of each particle;

 Update pbest and gbest for each particle;

 Update velocity using equation (7) and update

 position using equation (5);

 End

 Until stopping condition is true;

End

A. Particle Generation

In the initial step, the independent tasks are given as inputs
for generation of particles. Each particle represents one
solution to the problem and a set of particles is referred to as
population. The first generated particle is termed as initial
population (Swarm). The example for particle generation is
described as follows

If task is given as 3 then the particles are generated as
123,231,321,132,213,312.

B. Processor Allocation

The processors are allocated to the task, randomly. Once
the task is assigned to the processor and the same task will not
be further assigned to any other processors. The example for
processor allocation is described as follows

 From the example of particle generation, consider the

generated particle123 is allocated to 2 processors. In the table

below particle1 is allocated to processor1, particle2 is

allocated to processor2 and particle3 is allocated to processor1

in this manner for all the generated particles the processors are

allocated.
TABLE I. PROCESSOR ALLOCATION TABLE

Generated Particles

Processors

Particle1 Processor 1

Particle2 Processor2

Particle3 Processor1

C. Fitness Calculation

The fitness function measures to what extent the particle
solution S satisfies the objective of the optimization problem.
The fitness function F(x) is a sum of two objectives, the
makespan and flowtime as given by the equation (2) and (3).
The approach called adaptive weighted sum approach [11] is
used to weight the sum of the objectives. Each particle
evaluation is given by the equation (10) [11].

 =

 + (1-) , m≥2 (10)

where m is the number of objectives, αi is the i
th

 weighting

factor in the interval of (0, 1) and J is the objective function.

D. Particle Updation

At first the particle’s velocity is updated using the equation
(7) and then it is used for updating the particle’s position using
the equation (5). Velocity defines how quickly a particle
changes location and position represents a possible solution
point in the problem space. In PSO, every particle flutters
through the solution space by equations (7) and (5) in each
iteration. The loop is terminated when given iterations are met.
When the termination criteria are met, the best solution and its
corresponding objective function values as the optimized value
are returned.

VI. EXPERIMENTAL RESULTS

An effective scheduling algorithm has been developed to
schedule the tasks onto processors in a distributed computing
system. In order, to evaluate the performance of the proposed
method, the approach was compared with PSO for task
assignment problem in multiprocessor systems. The goal of the
scheduler in these methods is to minimize the makespan and
flowtime. These methods are implemented using Java.

For the proposed method the following ranges of parameter
values were tested: c1 and c2 = [1, 2], w0 = [0, 1], r = [0, 1] and
rand1 and rand2 = [0, 1]. Based on the experimental results the
proposed AWPSO algorithm performs best under the following
settings: r= 0.5, c1= c2= 1.2, w0 = 0.5, w1=w2=0.5, rand1 =
rand2=0.2, w= 0.8 (fixed Inertia weight for PSO) and α0 = 0.5.

In this section, both the AWPSO and PSO algorithms are
applied and the results are plotted. The plots are placed for the
same number of tasks but for different number of iterations,
population sizes and processors.

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 2 [ISSN 2250 - 3765]

77

Figure 1. AWPSO and PSO for varying Number of Processors

Figure 2. AWPSO and PSO for varying Population sizes

Figure 3. AWPSO and PSO for varying Number of Iterations

From the figures above i.e., Figure 1, Figure 2 and Figure 3
showed that the proposed algorithm Adaptive Weighted
Particle Swarm Optimization outperforms other methodology
namely PSO. Thus the task scheduling is better in AWPSO
than PSO.

VII. CONCLUSION

In distributed computing systems, the assignment of tasks

to set of processors is important for effective utilization of

resources. In this paper, the proposed algorithm AWPSO finds

optimal solutions by minimizing the makespan and flowtime

simultanously. The Experimental results proved that the

AWPSO algorithm shows better results compared to the PSO

algorithm with fixed Inertia weight. However, further work

could be carried out with AWPSO algorithm for scheduling

the jobs with precedence constraints or in dynamic

environments.

REFERENCES

[1] Prasana Sugavanama, H.J.Seigel, Anthony A.Maciejewski, Mohana
Oltikar, Ashih Mehta, Ron Pichel, Aaron Horiuchi, Vladimir Shestak,
Mohammad Al-Otaibi, MahirAydin, Panho Lee, Kumara Guru, Micheal
Raskey, Alam Pippin,” Robust static allocation of resources for
independent tasks under makespan and dollar cost constraints”, in
Journal of Parallel Distributed Computing,vol.676,pp.400-416,2007.

[2] A.Abraham, H.Liu, W.Zhang, T.G. Chang,”Scheduling Jobs on
Computational Grids Using Fuzzy Partilce Swarm Algorithm”, in
Springer- Verlag Berlin Heidelberg ,pp.500-507,2006.

[3] M.Macheswaran, S.Ali, H.J.Seigel,D.Hensen and R.F.Freund, “Dynamic
mapping of a class of independent tasks onto heterogeneous computing
systems”, in Journal of Parallel Distributed Computing, vol.59,pp.107-
131,1999.

[4] R.F.Freud, M.Gherrity, S.Ambrosius, M.Campbell, M.Halderman,
D.Hensgen, E.Keith, T.Kidd, M.Kussow, J.D.Lima, F.Mirabile,
L.Moore, B.Rust and H,J.Seigel, “Scheduling resources in multi-
user,heterogeneous, computing environments with SmartNet”, in 7th
IEEE Herterogeneous Computing Workshop, pp.184-199, 1998.

[5] A.Abraham, R. Buyya and B.Nath, “Nature’s heuristics for scheduling
jobs on computational grids”, in 8th IEEE International Conference on
Advanced Computing and Communications, pp.45-52,2000.

[6] H.Izakian, A.Abraham and V.Snasel, “ Comparision of heuristics for
scheduling independent tasks on hereogeneous distributed
environments”, in International Joint Conference on Computational
Sciences and Optimization, pp. 8-12,2009.

[7] J.Page and J.Naughton, “ Framework for task scheduling in
heterogeneous distributed computing using genetic algorithms”, in
Artificial Intelligence Review,vol.24,pp.415-429,2005.

[8] A.Yarkhan and J.Dongarra, “Experiments with scheduling using
simulated annealing in a grid”, in 3rd International Workshop on Grid
Computing, MD, USA, November18,pp.232-242,2002.

[9] G.Ritchie and J.Levine, “A fast, effective local search for scheduling
independent jobs in heterogeneous computing environments”, Technical
17 Non Dominated Particle Swarm Optimization report, Centre for
Intelligent System and their Applications, School of Informatics,
University of Edinburgh,2003,

[10] Hesam Izakian, Ajith Abraham and Vaclav Snasel, “ Metaheuristic
Based Scheduling Meta-Tasks in Distributed Heterogeneous Computing
Systems”, in Proc. Sensors, ISSN 1424-8220, vol.9, pp.5339-5350,
2009.

[11] II Yong Kim and Olivier de Week,” Adaptive Weighted Sum Method
for Multiobjective Optimization”, in Proc. AIAA, 2004.

[12] G.Subashini and M.C.Bhuvaneswari, “ Non Dominated Particle Swarm
Optimizatio for Scheduling Independent Tasks on Heterogeneus
Distributed Environments”, in ICSRS Publication, vol.3, ISSN 2074-
8523, 2011.

[13] R.Cheng and M.Gen, “ An Adaptive superplane approach for multiple
object optimization problems”, in Technical report, Asikaga Institute of
Technology, 1998.

[14] S.N.Sivanandam and P.Visalakshi, “Dynamic Tsk Scheduling with Load
Balancing using Hybrid Particle Swarm Optimization”, in ICSRS, vol.2,
ISSN 1998-6262, 2009.

[15] C.Agees kumar and N.Kesavan Nair, “Multi-objective PID Controller
based on Adaptive Weighted PSO with application to steam temperature
control in Boiler”, in International Journal of Engineering Science and
Technology, vol.2(7),pp.3179-3184,2010.

