
UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 2 [ISSN 2250 - 3765]

7

Next Generation VP8 Video codecs for

Mobile Multimedia Communications:

Basava Raju S, Dr B Siva Kumar (Prof and HOD of TE Dept., Dr AIT Bangalore)

Email: rajhunsur@yahoo.co.in, sivabs2000@yahoo.co.uk

Abstract— In this article, we give an overview of several

core Technologies involved in the next generation mobile

media communications system from both the media codecs

and media transport perspectives. Here we introduce

H264 and VP8 video codecs that are suitable for mobile

communications, including a low complexity and low bit

rate codec for video conferencing and generic scalable

video coding. Video codec has been widely used on PC’s

with relatively strong capability. However mobile devices,

such as Pocket PCs and Handheld PCs still suffer from

weak computational power, short battery lifetime and

limited display capability and good quality of Video.

Regarding this there is very much need of practically low

complexity real time video codec for mobile devices. So

that here implementing Google VP8 and H264 baseline

profile and comparing to get better results for mobile

applications. And here several methods that can

significantly reduce the computational cost are adopted in

these codecs. H264 and VP8 video Codecs are the most

widely-accepted video standard in recent years, here

analysing performance of the both codec’s and try to

improving the quality of image for mobile applications.

Both of these video decoders are very much necessary for

today’s entertainment and competitive mobile applications

world. The explosion of mobile device market has caused

an increase in the need for fast and low-power applications

like video encoding, decoding, and image manipulation.

Keywords— PCs, Codec’s, H 264, VP8, Mobile applications, Bit

rate, next generation multimedia communications.

I. INTRODUCTION

Video compression is used to exploit limited storage and

transmission capacity as efficiently as possible, which is

important for the Internet, mobile applications and high

definition media so that Both H 264 and VP8 codecs analysis

as given here

VP8 decoder: Google has recently released the video

compression format VP8 to the open source community. This

new compression format competes against the existing H.264

video standard developed by the ITU-T Video Coding Experts

Group (VCEG) in collaboration with the ISO/IEC Moving

Picture Experts Group (MPEG). This paper compares these

two video coding standards in terms of video bit rate-

distortion (quality) performance and the video network traffic

variability with different long video sequences. The main

motivation was to avoid license fees for H.264 based products

that will begin in 2011 for Google's products, such as the

Chrome browser or youTube. In order to make this video

codec widespread and increase adoption possibilities of VP8

as the default HTML5 video standard, Google open- sourced

the formerly closed-source developed video codec.

And also Inheriting many great innovations from its

predecessors (VP7 and VP6) such as golden frames,

processor-adaptive real-time encoding and a low-complexity

loop filter, VP8 adds more than fifty new techniques to

achieve its goal of outstanding quality at low bitrates, with

very low complexity and VP8 specifies exact values for

reconstructed pixels. This greatly facilitates the verification of

the correctness of a decoder implementation as well as

avoiding difficult-to-predict visual incongruities between such

implementations.
VP8 offers both VBR (variable bit rate) and CBR (constant bit

rate) encoding options. CBR attempts to keep the bit rate more

constant, i.e. the codec tries to remain within given buffering

constraints. If the user sets CBR mode but gives very loose

buffer restrictions, then the result will start to resemble VBR.

Mainly VP8 is an open source video compression format

supported by consortium of technology companies. This paper

provides a technical overview of the format, with an emphasis

on its unique features. This paper also discusses how these

features benefit VP8 in achieving high compression efficiency

and low decoding complexity at the same time. This will

helpful for mobile communication applications.

II PROCEDURE:

A. Review Stage:

From the very beginning of VP8’s development, the

developers were focused on Internet/web-based video

applications. This focus has led to a number of basic

assumptions in VP8’s overall design:

Low bandwidth requirement: One of the basic design

assumptions is that for the foreseeable future, available

network bandwidth will be limited. With this assumption, VP8

was specifically designed to operate mainly in quality

range from “watchable video” (~30dB in the PSNR

metric) to “visually lossless” (~45dB).

Heterogeneous client hardware: There is a broad spectrum

of client hardware connected to the web, ranging from low

power mobile and embedded devices to the most advanced

desktop computers with many processor cores. It must,

therefore, be range from “watchable video” (~30dB in the

PSNR.

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 2 [ISSN 2250 - 3765]

8

Hybrid transform with adaptive quantization: VP8 uses

4x4 block-based discrete cosine transform (DCT) for all luma

and chroma residual signal. Depending on the prediction

mode, the DC coefficients from a 16x16 macro block may

then undergo a 4x4 Walsh-Hadamard transform.

However, 3 differences between VP8′s scheme and H.264′s.

The first is that the 8×8 transform is omitted entirely (fitting

with the omission of the i8x8 intra mode). The second is the

specifics of the transform itself. This will not good for mobile

communication applications H.264 uses an extremely

simplified “DCT” which is so un-DCT-like that it often

referred to as the HCT (H.264 Cosine Transform) instead.

This simplified transform results in roughly 1% worse

compression, but greatly simplifies the transform itself, which

can be implemented entirely with adds, subtracts, and right

shifts by 1. VP8 uses an extremely, needlessly accurate

version that uses very large multiplies (20091 and 35468).The

third difference is that the Hadamard hierarchical transform is

applied for some inter blocks, not merely i16x16. In

particular, it also runs for p16x16 blocks. While this is

definitely a good idea, especially given the small transform

size (and the need to decor relate the DC value between the

small transforms).This will effect especially at high

resolutions.. The one good new idea here is applying the

hierarchical DC transform to inter blocks.

For quantisation, the core process is basically the same among

all MPEG-like video formats, and VP8 is no exception. The

primary ways that video formats tend to differentiate

themselves here is by varying quantisation scaling factors.

There are two ways in which this is primarily done: frame-

based offsets that apply to all coefficients or just some portion

of them, and macro block-level offsets. VP8 primarily uses

the former; in a scheme much less flexible than H.264′s

custom quantisation matrices, it allows for adjusting the

quantiser of luma DC, luma AC, chroma DC, and so forth,

separately. The latter (macro block-level quantiser choice)

can, in theory, be done using its “segmentation map” features,

albeit very hackly and not very efficiently.

Flexible reference frames: VP8 uses three types of reference

frames for inter prediction: the “last frame”, a “golden frame”

(one frame worth of decompressed data from the arbitrarily

distant past) and an “alternate reference frame.” Overall, this

design has a much smaller memory footprint on both encoder

and decoder than designs with many more reference frames.

Golden Reference Frame: We have found experimentally

that it is very rare for more than three reference frames to

provide significant quality benefit, but the undesirable

increase in memory footprint from the extra reference frames

is substantial. And very often, the most beneficial reference

frames are not the last three frames encoded. Depending on

content, a frame from the distant past can be very beneficial in

terms of inter prediction when objects re-appear after

disappearing for a number of frames. Based on such

observations, VP8 was designed to use one reference frame

buffer to store a video frame from an arbitrary point in the

past. This buffer is known as the “Golden Reference Frame.”

The format also defines a number of flags in the bit stream to

notify a decoder when and how to update this buffer.

VP8 encoders can use the Golden Reference Frame in many

ways to improve coding efficiency. It can be used to maintain

a copy of the background when there are objects moving in

the foreground, so that occluded regions can be easily and

cheaply reconstructed when a foreground object moves away.

Together with the last reference frame, the Golden Reference

Frame may also be used to create a background sprite. Such

an arrangement is helpful to compression efficiency in many

video scenes. Another use of the golden frame is the coding of

back and forth cut of two scenes, where the golden frame

buffer can be used to maintain a copy of the second scene.

Finally, the golden frame can also be used for error recovery

in a real-time video conference, or even in a multi-party video

conference for scalability

Alternate (Constructed) Reference Frame: Unlike other

types of reference frames used in video compression, which

are always displayed to the user by the decoder, the VP8

alternate reference frame is decoded normally but may or may

not be shown in the decoder. It can be used solely as a

reference to improve inters prediction for other coded frames.

Because alternate reference frames have the option of not

being displayed, VP8 encoders can use them to transmit any

data that is helpful to compression. For example, a VP8

encoder can construct one alternate reference frame from

multiple source frames, or it can create an alternate reference

frame using different macro blocks from many different video

frames. The flexibility in VP8 specification allows many types

of usage of the alternate reference frame for improving coding

efficiency. Here are two illustrative examples:

Noise-Reduced Prediction: The alternate reference frame is

transmitted and decoded similarly to other frames; hence its

usage does not increase computational complexity in the

decoder. However, in off-line applications the VP8 encoder is

free to use more sophisticated processing to create them. One

application of the alternate reference frame is for noise-

reduced prediction. In this application, the VP8 encoder uses

multiple input source frames to construct one reference frame

through temporal or spatial noise filtering. This “noise-free”

alternate reference frame is then used to improve prediction

for encoding subsequent frames.

Improving Prediction without B-Frames: The lack of B

frames has led to discussion in the research community about

VP8’s ability to achieve high compression efficiency. The

VP8 format, however, supports intelligent use of the golden

reference and the alternate reference frames together to

compensate for this. The VP8 encoder can choose to transmit

an alternate reference frame assembled with content from

many “future” frames using sophisticated filtering. Encoding

of subsequent frames can then make use of information from

the past (last frame and golden frame) and from the future

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 2 [ISSN 2250 - 3765]

9

(alternate reference frame). Effectively, this helps the encoder

to achieve compression efficiency without requiring frame

reordering in the decoder.

Efficient intra prediction and inter prediction: VP8 makes

extensive uses of intra and inter prediction. VP8’s intra

prediction features a new “TM_PRED” mode as one of the

many simple and effective intra prediction methods. For inter

prediction, VP8 features a flexible “SPLITMV” mode capable

of coding arbitrary block patterns within a macro block.

VP8 uses two classes of prediction modes: Intra prediction

uses data within a single video frame, and Inter prediction

uses data from previously encoded frames.

VP8 Intra Prediction Modes: VP8 intra prediction modes

are used with three types of blocks:

● 4x4 luma

● 16x16 luma

● 8x8 chroma

Four common intra prediction modes are shared by these

blocks:

● H_PRED (horizontal prediction): Fills each column of the

block with a copy of the left column

● V_PRED (vertical prediction): Fills each row of the block

with a copy of the above row.

● DC_PRED (DC prediction): Fills the block with a single

value using the average of the pixels in the row above and the

column to the left

● TM_PRED (True Motion prediction): In addition to the

row and column , TM_PRED uses the pixel above and to the

left of the block. Horizontal differences between pixels and

vertical differences between pixels are propagated to form the

prediction block. For 4x4 luma blocks, there are six additional

intra modes corresponding to predicting pixels in different

directions. As mentioned above, the TM_PRED mode is

unique to VP8.

VP8 Inter Prediction Modes: In VP8, inter prediction modes

are used on inter frames (non-key frames). For any VP8 inter

frame, there are typically three Previously coded reference

frames that can be used for prediction. A typical inter

prediction block is constructed using a motion vector to copy

a block from one of the three frames. The motion vector

points to the location of a pixel block to be copied. In video

compression schemes, a good portion of the bits is spent on

encoding motion vectors; the portion can be especially large

for video encoded at lower data rates. VP8 provides efficient

motion vector coding by reusing vectors from neighbouring

macro blocks. For example, the prediction modes

“NEAREST” and “NEAR” make use of last and second-to-

last, non-zero motion vectors from neighbouring macro

blocks. These inter prediction modes can be used in

combination with any of the three different reference frames.

In addition, VP8 has a sophisticated, flexible inter prediction

mode called SPLITMV. This mode was designed to enable

flexible partitioning of a macro block into sub-blocks to

achieve better inter prediction. SPLITMV is useful when

objects within a macro block have different motion

characteristics. Within a macro block coded using the

SPLITMV mode, each sub-block can have its own motion

vector. Similar to the strategy of reusing without transmitting

motion vectors at the macro block level, a sub-block can also

use motion vectors from neighbouring sub-blocks above or

left of the current block without transmitting the motion

vectors.

High performance sub-pixel interpolation: VP8’s motion

compensation uses quarter pixel accurate motion vectors for

luma pixels. The sub-pixel interpolation of VP8 features a

single-stage interpolation process and a set of high

performance six-tap interpolation filters. The filter taps used

for The six tap filters are:

[3, -16, 77, 77, -16, 3]/128 for ½ pixel positions

[2, -11, 108, 36, -8, 1]/128 for ¼ pixel positions

[1, -8, 36, 108, -11, 2]/128 for ¾ pixel positions

Chroma motion vectors in VP8 are calculated from their luma

counterparts by averaging motion vectors within a macro

block, and have up to one eighth pixel accuracy. VP8 uses

four-tap bicubic filters for the 1/8, 3/8, 5/8 and 7/8 pixel

positions. Overall, the VP8 interpolation filtering process

achieves optimal frequency response with high computation

efficiency.

Adaptive in-loop deblocking filtering: Loop filtering is a

process of removing blocking artifacts introduced by

quantization of the DCT coefficients from block transforms.

VP8 brings several loop-filtering innovations that speed up

decoding by not applying any loop filter at all in some

situations. VP8 also supports a method of implicit

segmentation

Where different loop filter strengths can be applied for

different parts of the image, according to the prediction modes

or reference frames used to encode each macro block. For

example it would be possible to apply stronger filtering to

intra-coded blocks and at the same time specify that inter

coded blocks that use the Golden Frame as a reference and are

coded using a (0,0) motion vector should use a weaker filter.

The choice of loop filter strengths in a variety of situations is

fully adjustable on a frame-by-frame basis, so the encoder can

adapt the filtering strategy in order to get the best possible

results. In addition, similar to the region-based adaptive

quantization in section 3, VP8 supports the adjustment of loop

filter strength for each segment. Fig. 4 shows an example

where the encoder can adapt the filtering strength based on

content.

Frame level adaptive entropy coding: VP8 uses binary

arithmetic coding extensively for almost all data values except

a few header bits. Entropy contexts are adaptive at the frame

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 2 [ISSN 2250 - 3765]

10

level, striking a balance between compression efficiency and

computational complexity.

Parallel processing friendly data partitioning: VP8 can

pack entropy coded transform coefficients into multiple

partitions, to facilitate parallel processing in decoders. This

design improves decoder performance on multi-core

processors, with close to zero impact to compression

efficiency and no impact to decoding performance on single

core processors.

So that this analysis will helpful for mobile communication

applications in terms of bit rate wise.

III. PERFORMANCE COMPARISON

Fig. 1: H.264 encoder block diagram.

Fig. 2: H.264 decoder block diagram.

Fig 3: VP8 Encoder and Decoder diagram

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 2 [ISSN 2250 - 3765]

11

Quantisation Parameter

tion Parameter

Parameter

er

Quantisa

tion

Paramet

er

Encodi

ng time

(sec)

Bit

Rates

(Kbits/s

ecs)

Compression

Ratio

2 0.234 2393.4 42.38

8 0.140 323.9 311.4

20 0.47 124.3 810

ABOVE Table –1: H.264 - calculation for hall_cif.yuv (90

frames):

 And Below Fig 4 respective image:

Fig. 4: H.264 - hall_cif.yuv

Fig. 5 VP8 - hall_cif.yuv

Below Table –2: VP8 - calculation for hall_cif.yuv (90

frames):

 And Fig 5 respective image:

Quantisa

tion

Paramet

er

Encodi

ng time

(sec)

Bit

Rates

(Kbits/s

ecs)

Compression

Ratio

 2 3.931 5179.5 19.19

8 2.761 2036.5 49.77

20 2.028 693.6 146.06

Fig 6:

Bit rate v/s compression ratio for hall_cif.yuv (90 frames)

Table –3 H.264 - calculation for hall_qcif.yuv (90 frames):

 And Fig 7 respective image:

Quantisa

tion

Paramet

er

Encodi

ng time

(sec)

Bit

Rates

(Kbits/s

ecs)

Compression

Ratio

2 0.047 488.6 51.8

8 0.047 100.2

20 2.028 693.6 146.06

Fig 7: H.264 - hall_qcif.yuv

UACEE International Journal of Computer Science and its Applications - Volume 2: Issue 2 [ISSN 2250 - 3765]

12

Table –4 VP8 - calculation for hall_qcif.yuv (90 frames):

 And Fig 9 respective image:

Quantisa

tion

Paramet

er

Encodi

ng time

(sec)

Bit

Rates

(Kbits/s

ecs)

Compression

Ratio

2 0.733 1098.3 23.6

8 0.546 418.5 60.53

20 0.479 173.7 144.65

Fig 8 shows
Bit rate v/s compression ratio for hall_qcif.yuv (90 frames)

Fig 9: VP8 - hall_qcif.yuv

IV. CONCLUSIONS

As a result of the many advanced coding features, VP8 can

make the best use of computation power in modern hardware

for improving compression efficiency while maintaining fast

decoding speed on majority devices. Figure shows the

decoding speed test results on two different hardware

platforms for video files encoded in VP8 and H.264 at similar

bitrates.

Therefore the decoding speeds may reflect the intrinsic

decoding complexity. As shown in Fig. 6, the decoding speeds

of VP8 encoded files are consistently faster, average around

30%, than those of H.264 encoded files at a similar bitrate

across the two different hardware platforms.

It is not difficult to conclude from the test results that, in

the designed operating range of web video, VP8 can achieve

Compression efficiency that is competitive to the best

H.264/AVC encoder available. At the same time, however, the

low complexity design of the VP8 format enables decoder

implementations to achieve much faster decoding speeds than

H.264/AVC on various platforms.

Comparing the compression ratios v/s bit rate it shows that

H.264 and VP8 have similar performance except VP8 has a

slight edge over H.264 at lower bit rates. The main reason

being use of golden frames in real time low bit rate

applications. And Comparing the encoding times it shows that

H.264 encoder is almost 15-20 times faster then VP8 encoder.

These are early stages of VP8 development and constant

upgrading of VP8 encoder is in progress. The main reason for

slow encoder is lack of B-frames (bipredictive) in VP8.

REFERENCES

[1] A. Puri, X. Chen and A. Luthra, “Video coding using the

H.264/MPEG-4 AVC compression standard”, Signal Processing:

Image Communication, vol. 19, pp. 793-849, Oct. 2004
[2] S. K. Kwon, A. Tamhankar and K. R. Rao, “Overview of

H.264/MPEG-4 Part 10” J. Visual Communication and Imag

Representation, vol. 17, pp.186-216, Apr. 2006.

[3] VP8 Decoder -Google

[4] http://multimedia.cx/eggs/vp8-the-savior-codec/ - VP8:

The Savior Codec.

[5] http://multimedia.cx/eggs/vp8-transform-and-

quantization/ - VP8 encoder and decoder explanation.

[6] http://iphome.hhi.de/suehring/tml/ - JM software source

code

[7] http://www.webmproject.org/code/- Explore the WebM

Source Code for VP8.

[8] J. Bankoski, P. Wilkins, Y. Xu, “VP8 Data Format and

Decoding Guide,” http://www.ietf.org/internet-

drafts/draftbankoski-vp8-bitstream-01.txt,

Jan 2011.

[9] [9] J. Bankoski, “On2’s Truemotion VP7 video codec

and golden frames”, EE Times, Jul 2008.

